Sequoia
Loading...
Searching...
No Matches
sequoia::maths::convex_space Concept Reference

concept for convex spaces More...

#include <Spaces.hpp>

Concept definition

template<class T>
|| ( has_set_type_v<T>
&& (has_vector_space_type_v<T> || has_free_module_type_v<T>)
&& (identifies_as_convex_space_v<T> || identifies_as_affine_space_v<T>))
concept for convex spaces
Definition: Spaces.hpp:517
concept for a free module, implicitly understood to be over a commutative ring.
Definition: Spaces.hpp:476

Detailed Description

concept for convex spaces

A convex space may be a free module. Otherwise, it comprises a set and a free module (which may be a vector space), and must identify as either a convex or affine space.