Tools for statistical analysis.
More...
#include <cmath>
#include <numeric>
#include <optional>
#include <iterator>
Go to the source code of this file.
|
template<std::input_iterator Iter, class T = typename std::iterator_traits<Iter>::value_type> |
std::optional< T > | sequoia::maths::mean (Iter first, Iter last) |
|
template<std::input_iterator Iter, class T = typename std::iterator_traits<Iter>::value_type> |
std::pair< std::optional< T >, std::optional< T > > | sequoia::maths::cummulative_square_diffs (Iter first, Iter last) |
|
template<std::input_iterator Iter, class T = typename std::iterator_traits<Iter>::value_type> |
std::pair< std::optional< T >, std::optional< T > > | sequoia::maths::variance (Iter first, Iter last) |
|
template<std::input_iterator Iter, class T = typename std::iterator_traits<Iter>::value_type> |
std::pair< std::optional< T >, std::optional< T > > | sequoia::maths::sample_variance (Iter first, Iter last) |
|
template<std::input_iterator Iter, class T = typename std::iterator_traits<Iter>::value_type> |
std::pair< std::optional< T >, std::optional< T > > | sequoia::maths::standard_deviation (Iter first, Iter last) |
|
template<std::input_iterator Iter, class Estimator = bias::gaussian_approx_estimator, class T = typename std::iterator_traits<Iter>::value_type> |
std::pair< std::optional< T >, std::optional< T > > | sequoia::maths::sample_standard_deviation (Iter first, Iter last, Estimator estimator=Estimator{}) |
|
Tools for statistical analysis.